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It has recently been suggested that there may be an infinite number of indepen- 
dent exponents hidden in the tails of the probability distribution of average per- 
colation cluster numbers. A simple approximation of non-Gaussian effects was 
used to deduce this result and we show that this approximation is questionable. 
Extensive simulations of the cluster distribution have been made and an 
interesting dependence of the cumulants on concentration and range of sum- 
mation has been observed. 
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The K a s t e l e y n - F o r t u i n  fo rmula  ~l) for the pa r t i t i on  funct ion Zq of the 
q-state Po t t s  mode l  gives 

= Y~Xs z= q As  (exp(lnq)/  ,1, 
where Ns is the n u m b e r  of  clusters of occupied  sites of size s on a la t t ice 
whose sites are occupied  with p robab i l i t y  p. The  free energy of the q-state 
Po t t s  mode l  Fq, where 

ln(q) Fq ~ In Zq (2) 

has a s ingular  pa r t  

Fq,  sing ,~ A(q)  ]p - p~:(q)t 2-~(q~ (3) 

Stauffer and  Conigl io  ~2) (SC) recent ly  p r o p o s e d  tha t  knowledge  of  the 
detai ls  of  the d i s t r ibu t ion  of  the Ns,  P(Ns) ,  should  suffice for the 
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calculation of all the critical exponents [including ~(q)] and of the critical 
points Pc(q) for the q-state Potts model. In order to determine where the 
(infinite number of) Potts exponents are located in the P(N~), SC 
proceeded to make a cumulant expansion for in Zq: 

lnZq N~) 1 Z U s -  ~N~ 2 
F q - l n q - ( ~  , + 2 ( l n q ) ( (  s / s  ) ) )  

1 
+ g ( l n q ) 2 1 ( ~ N s - ( ~ N I ) 3 1 +  ... 

k= 1 ~.T ck ( ln  q)k--1 (4)  

where Ck is the kth cumulant of the distribution of ~ Ns. As SC show, 
neglecting the fluctuations in N~ would yield 

incorrectly implying that the free energy of all Potts models is proportional 
to that of percolation, Z , ( N , ) .  Thus, a more sophisticated way of 
calculating In Zq is required. 

In order to simplify the cumulant expansion of Eq. (4), SC proposed 
the use of a result of Coniglio eta/. (3) (CSN). CSS found upper and lower 
bounds that coincided to give 

( (Ns 2 } - (Ns}2)/(Ns} ~ 1 (5) 

for s ~ ~ ,  p ~< Pc- They also obtained Monte Carlo data that showed that 
this result holds for small clusters (s > i) and p = Pc. We shall present 
further evidence confirming this result below. 

To this point we are in complete agreement with CS. However, during 
the simplification of the cumulants in Eq. (4), SC factorized 

c2= Ns-  N~ =~ ((Ns- (N,})  2 } (6) 
s 

and 

to 

C3: Ns-- N, =Z  ((N~-- (Ns)) 3 ) 
s 

(7) 

These simplifications were made in order to be able to invoke Eq. (5) 
replace ((Ns- (Ns) 2) = (N2~)- (Ns )  2 with (Ns) .  A similar 
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replacement of ( ( N , -  <N,>)3> with fsN3s/2, where f~= < ( N , -  <N,))3)/  
< (N , -<N,>)2 )  3/2, was also proposed. The result of these factorizations 
and replacements is the conclusion that the free energy per site is 

In Zq _ l n q z  . (in q)2 
tts -1- - - - ~ ' - -  ~ '  /7 3/2t~ L d/2 + " ' "  (8)  

where ns= (N ,> /L  d, and L is the linear dimension. From this SC deduced 
that only the third and higher terms can contribute to the crossover toward 
Potts critical behavior. Since f ,  ~ L a/2, they also claimed that the Potts 
exponents must be hidden in the finite-size deviations of P(N,) from a 
Gaussian distribution. 

We find the use of the factorizations (6) and (7) somewhat 
questionable. From Eq. (4) it is clear that ck/k is the ( k -  1)th derivative of 
Fq with respect to In q at q = 1. Since F1 is the free energy of the per- 
colation problem, all ce must exhibit singularities only at Pc (percolation). 
For example, Eq. (4) implies that 

•Fq q = 1 c2~-~-~n q ~ - A ( 1 ) [ p - p ~ ( 1 ) ]  1-~(1)@~ [ 2 -  ct(1)] 
Oq q = l  

- A ( 1 ) [ p -  p,.(1)] 2 ~(~)ln[p-  pc(1)] ~ q  ) 
q = l  

0A q = l  +~_q ( p _  p,)2-~(,)+ ... (9) 

Only the last explicitly presented term has the critical behavior of (Ns>. 
The first two terms have a more singular p dependence. Thus, the 
factorization is wrong even for k = 2 and would be worse for larger k. 

Extensive numerical investigations on lattices of sizes up to 500 • 500 
with 500 different lattices used for each estimate have been carried out in 
order to elucidate this matter. We present detailed results below. Our data 
show that within error bounds 

( ( N , -  (Ns>)2> 
s=k  

s = k  

s - - k  

s - - k  

( ( N s - ( N ~ ) ) 3 )  

<(Ns-  <N~>)4> - 3 ~,, ( ( N s -  (Ns>)2> 2 
s : k  

(Jo) 
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for large enough k. In Eq. (10), m is the size of the largest finite cluster in 
each 500-lattice grouping and k takes selected values in the range 
2 ~<k ~< 100. We write the quantities appearing in Eq. (10) and the extreme 
right of Eqs. (6) and (7) as 

Nx(j,k,p,L)= Z ((Ns-(Ns))J)=Az(j,k,p,L) ~ (Ns) (11) 
s = k  s = k  

Quantities appearing in the center of Eq. (4) and in the center of Eqs. (6) 
and (7) are henceforth denoted by 

Np(j ,k ,p ,L)= ( N , - ( N s } )  =Ap(j ,k ,p ,L)  (Ns) 
S s ~ k  

(12) 

Finally, we also define 

N2x(k,p,L)= ~" ((Ns-(Ns))z)2=AZ(k,p,L) ~ (Ns) 
s = k  s = k  

(13) 

and note that fourth cumulants are given by 

NxC(4, k, p, L) = Nx(4, k, p, L) - 3N~(k, p, L) (14a) 

o r  

NC(4, k,p,L)=Ne(4,  k ,p ,L) -3[Ne(2 ,  k,p,L)] 2 (14b) 

The ci of Eq. (4) are equivalent to Ne(i, 1, p, oo) ( i<4) ,  or to 
NC(4, 1, p, oo), in the new notation. While the At(j, k, p, L) are close to 
unity, the Ae(j, k, p, L) are not, in general. The detailed behavior of the 
coefficients Ae(j, k, p, L) will be discussed below, but we note in passing 
that they have the expected L dependence, an interesting k dependence, 
and a totally surprising, strong p dependence. 

We have evaluated the various sums as well as powers of the sums for 
occupation probabilities between 0.35 and 0.8 on the square lattice. We 
have considered lattice sizes between 102 and 5002 sites, with periodic 
boundary conditions. We counted the clusters with programs developed by 
Adler et al. (4) for termite diffusion and based on the Hoshen-Kopelman (s) 
algorithm. The calculations were carried out on an IBM 3090. Even with 
the large memory of this machine it was found to be more efficient to 
generate each group of 500 samples twice. On the first run we obtained 
(Ns), and the second time we obtained the other averages. This was 
because storing the data and recalling it was slower than generating it 
when needed, because of paging problems. Preliminary calculations were 
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carried out on the individual averages in an attempt to determine whether 
we could evaluate ( N s - ( N ~ . ) )  2 and ( N , - ( N s ) )  3 as functions of s and 
then sum with the sum both within and without the expectation. Fluc- 
tuations for larger s values were so large that it was decided to collect data 
on sums with different cutoffs directly. We used 500 lattices for each 
evaluation and made between one and 15 independent evaluations for each 
p and L value. All sums and cutoffs were generated for each p and L choice. 

In Fig. 1 we present the different sums as functions of L for p- -0 .55 ,  
0.59, and 0.62 with the cutoff s ~> 20. These results are typical of  those for 
the other cutoffs and nearby p values, but perhaps exhibit slightly better 
convergence than the lower cutoffs. We chose to present s ~> 20, because we 
hoped that relation (5) would be valid here and had doubts about its 
validity for smaller s. Convergence is actually even better for higher cutoffs, 
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Fig. 1. Graphs of different averages as functions of system size for concentrations 
(a)p=0.55, (b)p=0.59, and (c)p=0.62. The different averages are as follows: 
(~)  ~s~_2o(Ns), Nx(2, 20, p, L), Nz(3, 20, p, L); (�9 or �9 NC(4, 20, p, L); 
(+) Ne(2, 20, p, L); (,) Np(3, 20, p, L); ( ~ )  Nz(4 , 20, p, L); ( I )  N~(20, p, L); 
(0 )  Ne(2, 20, p, L). Solid lines are drawn to guide the eye only. 
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but these sums contain less information. In Fig. 1 the Nz(2, 20, p, L), 
m N Nz(3, 20, p, L), and Zs=2O( ~) are all indicated by the same symbol, since 

the differences are within the error bars, which are smaller than the 
symbols. Some NsC(4, 20, p, L) estimates also fell within the error bars 
and some without, and only the latter are separately indicated. The 
Ne(2, 20, 0.55, L) estimates of Fig. la also fell on the ~-~sm=20<Ns} values, 
but this was not true at other p choices, where these are separately 
indicated. In the other cases where Np estimates fail to be given, poor con- 
vergence was seen. The Nz and Np estimates that do converge clearly show 
that both have the same L dependence as that of Y'.sm20(Ns) and we see 
that Nz(4, 20, p, L), Ne(2, 20, p, L), N~(20, p, L), and [Ne(2, 20, p, L)]  2 
all have different L dependences. 

From Fig. 1 and our other similar plots we became convinced that A e 
values are certainly not unity. For  example, at p = 0.59, (Fig. lb), for j = 2 
we observe that Nz/N e ,.~ (Ap) -1 is greater than unity for small values of L 
and approaches unity for 50 < L < 100. For  L > 100 this ratio approaches a 
constant value which is less than unity. This constant is a function of j, and 
by comparison with Fig. lc we see that the constant appears to be p depen- 
dent as well. We decided to explore this matter further by carrying out 
an extensive set of calculations for different k and p choices. From Fig. 1 
we may conclude that asymptotic behavior has set in by L =  100. Since 
we found that for some p choices convergence of A e values required many 
different runs, we decided that L =  100 was a good size for extensive 
calculations, since the larger samples required several hours for each 
500-sample calculation. 

We made extensive calculations of 15 different sets of 500 samples for 
k choices of 2, 5, 10, 20, and 100 for various p choices. Some results of 
these analyses are plotted in Figs. 2a and 2b, where we give plots of 
Ae(2, k, p, 100) and Ae(3, k, p, lO0), respectively. Unfortunately, the 
fluctuations in the Ae(4, k,p, 100) data were too large to draw any 
conclusions and not even the Ae(3, k, p, 100) points were convergent for 
lower p values. 

The A e estimates show a complex and interesting p and k dependence. 
In addition, it does appear that the second and third cumulants have 
different dependences on these variables, although there may be a simple 
scaling between these. This behavior would seem to suggest that the 
factorizations of Eqs. (6) and (7) are not correct. We have been unable to 
develop arguments analogous to those of SC with replacements for these 
equations because this dependence is so very complex. 

As a first step in the further investigation of this singular behavior, 
we looked at some of the Ne values to search for the divergences in the c; 
that are suggested by Eq.(9).  In Fig. 3 we graph Zsm k (Ns)  and 
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Fig. 2. Graphs of (a) Ap(2 , k, p, 100) and (b) Ap(3 , k, p, 100) as functions o fp  for different 
cutoff k choices: ( ,)  k = 2 ,  ( ~ )  k = 5 ,  (@) k =  10, (A)  k=20 ,  (O)  k =  100. Solid lines are 
drawn to guide the eye only. 
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Fig. 3. Graph of No and N E values indicating evidence for a potential divergence in c 3. The 
different k and j choices are indicated as follows: ( O ) Z ~ _ 2 ( N s ) ,  ( A ) 5 ~ _ 5 ( N , ) ,  
( + )  Ne(2, 2, p, 100), (O)  Ne(2, 5, p, 100), ( ~ )  Ne(3 , 2, p, 100), ( ,)  Np(3 , 5, p, 100). Solid 
lines are drawn to guide the eye only. 

Np(j, k, p, 100) for j = 2  and 3 and observe that for j =  3 there is indeed an 
indication of a possible divergence in the infinite system. The 
Ne(3, k, p, 100) for the two smallest k values exhibit peaks centered in the 
region of Pc. In order to confirm that these peaks can be interpreted as a 
divergence of the infinite system, we would need to carry out a comprehen- 
sive finite-size scaling analysis. This would require the generation of data of 
this quality for larger sizes and this is not feasible at present. The 
Nx(2, k, p, 100) and Nx(3, k, p, 100) values were also calculated, but are 
not presented on the graph for reasons of clarity of presentation. They did 

m N deviate slightly from the )-'.s=~( s) values, but, as discussed below, these 
deviations may not be significant. 

Table I. Different Az(2,  k, p, 100) Values 

p k = 2  k = 5  k=10 k=20 k=100 

0.57 1.039 1.014 1.003 1.002 0.998 
0.59 1.049 1.015 1.009 1.000 1.000 
0.61 1.042 1.010 0.997 0.998 1.045 
0.65 1.025 1.004 1.006 1.007 0.985 
0.70 1.028 
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Since we generated many more samples and larger systems than those 
of CSS, we decided to also use our data to investigate the Ax. Some of 
these results are presented in Table I. Here we observe only a slight 
deviation from unity, which may not be significant, although there do 
appear to be some consistent trends for smaller k choices. 

The main conclusion from our analysis is that while we do agree that 
for larger s values ( ( N~)  - ( N s ) Z ) / ( ( N s ) )  --~ 1, the fact that in general 

prevents this observation from providing a direct path to Eq. (8) and 
thence to the deductions of SC. In other words, cross correlations between 
different cluster sizes preclude use of their simple factorization. Instead, we 
see a complex, cumulant-dependent behavior already in the ( ( Z , N , -  
(EsNs)) 2) and ((~_,sN,-(Y',Ns))3). It might be conjectured that 
somewhere within this dependence Potts critical exponents are hidden. 
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